首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   881篇
  免费   63篇
  2023年   4篇
  2021年   30篇
  2020年   13篇
  2019年   17篇
  2018年   25篇
  2017年   16篇
  2016年   33篇
  2015年   48篇
  2014年   56篇
  2013年   50篇
  2012年   86篇
  2011年   88篇
  2010年   55篇
  2009年   41篇
  2008年   51篇
  2007年   65篇
  2006年   57篇
  2005年   43篇
  2004年   32篇
  2003年   33篇
  2002年   27篇
  2001年   2篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   8篇
  1995年   2篇
  1993年   3篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1987年   3篇
  1986年   4篇
  1985年   3篇
  1984年   2篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1968年   1篇
  1964年   2篇
  1961年   1篇
  1957年   1篇
  1936年   2篇
  1932年   1篇
  1931年   1篇
排序方式: 共有944条查询结果,搜索用时 93 毫秒
21.
Most ecological research on cane toads (Rhinella marina) has focused on invasive populations in Australia, ignoring other areas where toads have been introduced. We radio-tracked and spool-tracked 40 toads, from four populations on the island of Hawai’i. Toads moved extensively at night (mean 116 m, from spool-tracking) but returned to the same or a nearby retreat-site each day (from radio-tracking, mean distance between successive retreat sites 11 m; 0 m for 70% of records). Males followed straighter paths during nocturnal movements than did females. Because moist sites are scarce on the highly porous lava substrate, Hawai’ian toads depend on anthropogenic disturbance for shelter (e.g. beneath buildings), foraging (e.g. suburban lawns, golf courses) and breeding (artificial ponds). Foraging sites are further concentrated by a scarcity of flying insects (negating artificial lights as prey-attractors). Habitat use of toads shifted with time (at night, toads selected areas with less bare ground, canopy, understory and leaf-litter), and differed between sexes (females foraged in areas of bare ground with dense understory vegetation). Cane toads in Hawai’i thrive in scattered moist patches within a severely arid matrix, despite a scarcity of flying insects, testifying to the species’ ability to exploit anthropogenic disturbance.  相似文献   
22.
23.
Proteins that bind DNA are the cause of the majority of impediments to replication fork progression and can lead to subsequent collapse of the replication fork. Failure to deal with fork collapse efficiently leads to mutation or cell death. Several models have been proposed for how a cell processes a stalled or collapsed replication fork; eukaryotes and bacteria are not dissimilar in terms of the general pathways undertaken to deal with these events. This study shows that replication fork regression, the combination of replication fork reversal leading to formation of a Holliday Junction along with exonuclease digestion, is the preferred pathway for dealing with a collapsed fork in Escherichia coli. Direct endo‐nuclease activity at the replication fork was not observed. The protein that had the greatest effect on these fork processing events was the RecQ helicase, while RecG and RuvABC, which have previously been implicated in this process, were found to play a lesser role. Eukaryotic RecQ homologues, BLM and WRN, have also been implicated in processing events following replication fork collapse and may reflect a conserved mechanism. Finally, the SOS response was not induced by the protein‐DNA roadblock under these conditions, so did not affect fork processing.  相似文献   
24.
25.
26.
27.
Understanding the determinants of species’ distributions is a fundamental aim in ecology and a prerequisite for conservation but is particularly challenging in the marine environment. Advances in bio‐logging technology have resulted in a rapid increase in studies of seabird movement and distribution in recent years. Multi‐colony studies examining the effects of intra‐ and inter‐colony competition on distribution have found that several species exhibit inter‐colony segregation of foraging areas, rather than overlapping distributions. These findings are timely given the increasing rate of human exploitation of marine resources and the need to make robust assessments of likely impacts of proposed marine developments on biodiversity. Here we review the occurrence of foraging area segregation reported by published tracking studies in relation to the density‐dependent hinterland (DDH) model, which predicts that segregation occurs in response to inter‐colony competition, itself a function of colony size, distance from the colony and prey distribution. We found that inter‐colony foraging area segregation occurred in 79% of 39 studies. The frequency of occurrence was similar across the four seabird orders for which data were available, and included species with both smaller (10–100 km) and larger (100–1000 km) foraging ranges. Many predictions of the DDH model were confirmed, with examples of segregation in response to high levels of inter‐colony competition related to colony size and proximity, and enclosed landform restricting the extent of available habitat. Moreover, as predicted by the DDH model, inter‐colony overlap tended to occur where birds aggregated in highly productive areas, often remote from all colonies. The apparent prevalence of inter‐colony foraging segregation has important implications for assessment of impacts of marine development on protected seabird colonies. If a development area is accessible from multiple colonies, it may impact those colonies much more asymmetrically than previously supposed. Current impact assessment approaches that do not consider spatial inter‐colony segregation will therefore be subject to error. We recommend the collection of tracking data from multiple colonies and modelling of inter‐colony interactions to predict colony‐specific distributions.  相似文献   
28.
29.
We developed a high-throughput methodology, termed fluorescent tagging of full-length proteins (FTFLP), to analyze expression patterns and subcellular localization of Arabidopsis gene products in planta. Determination of these parameters is a logical first step in functional characterization of the approximately one-third of all known Arabidopsis genes that encode novel proteins of unknown function. Our FTFLP-based approach offers two significant advantages: first, it produces internally-tagged full-length proteins that are likely to exhibit native intracellular localization, and second, it yields information about the tissue specificity of gene expression by the use of native promoters. To demonstrate how FTFLP may be used for characterization of the Arabidopsis proteome, we tagged a series of known proteins with diverse subcellular targeting patterns as well as several proteins with unknown function and unassigned subcellular localization.  相似文献   
30.
We have previously characterized heparan sulfate (HS) as the major ovarian sulfated glycosaminoglycan (GAG) in females of Rhodnius prolixus, while chondroitin sulfate (CS) was the minor component. Using histochemical procedures we found that GAGs were concentrated in the ovarian tissue but not found inside the oocytes. Here, we extend our initial observations of GAG expression in R. prolixus by characterizing these molecules in other organs: the fat body, intestinal tract, and the reproductive tracts. Only HS and CS were found in the three organs analyzed, however CS was the major GAG species in these tissues. We also determined the compartmental distribution of GAGs in these organs by histochemical analysis using 1,9-dimethylmethylene blue, and evaluated the specific distribution of CS within both male and female reproductive tracts by immunohistochemistry using an anti-CS antibody. We also determined the GAG composition in eggs at days 0 and 6 of embryonic development. Only HS and CS were found in eggs at day 6, while no sulfated GAGs were detected at day 0. Our results demonstrate that HS and CS are the only sulfated GAG species expressed in the fat body and in the intestinal and reproductive tracts of Rhodnius male and female adults. Both sulfated GAGs were also identified in Rhodnius embryos. Altogether, these results show no qualitative differences in the sulfated GAG composition regarding tissue-specific or development-specific distribution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号